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The theory of quadrupolar moments evaluation at a semiempirical level is 
examined in great detail. Special attention is devoted to the way proposed 
for the estimation of the sigma contribution using the point charge approxima- 
tion, and to the neglect of nearest-neighbour matrix elements in the evaluation 
of the property when wave functions obtained using the ZD O  approximation 
are used. There are objections to both procedures. In the last case a study 
of a method to evaluate these contributions, based on a reinterpretation of 
the ZDO approximation in terms of a symmetric orthogonalized basis set, 
is carried out. 
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1. Introduction 

In principle, quantum mechanics provides the possibility for a complete descrip- 
tion of the electronic properties of molecular systems, their structures, molecular 
constants, reactivities, etc. However,  the many body character of the problem 
has required a great deal of chemical insight and imagination to overcome both 
the computational difficulties encountered in the general case and to apply 
quantum theory in a chemically or physically meaningful manner. 

Semiempirical theories, particularly, have played an important role in the actual 
understanding of the structure of matter and today it is widely accepted that 
their immense utility suggests that they are a somehow valid, albeit imperfect, 
description of nature. On the other hand, since theory is not only used to provide 
an empirical scheme for rationalizing experimental results in an interpretative 
manner, very much care must be exercised in estimating parameter  values and 
understanding the meaning of the approximations proposed, so as to ensure 
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internal consistency and to understand the predictive character of the theory. 
In this connection, a great deal of effort has been devoted to the elucidation of 
the reasons for the success of simple theories 1, in the hope that this new 
understanding will enable both the specification of their range of applicability 
and the development of new and improved theories. 

The understanding attained from the extensively used zero-differential overlap 
approximation [1], in terms of symmetrically orthogonalized orbitals [2], is one 
of the clearest examples. However,  these possible improvements in the theoretical 
foundation of semiempirical theories are not always utilized. In theoretical 
estimations of quadrupolar moments and their hyperpolarizabilities, this point 
has been consistently overlooked [3-8]. Some years ago, the present author 
carried out a detailed analysis of the evaluation of quadrupolar moment  matrix 
elements and it was possible to show that the simple extension of the ZD O  
approximation produced quite different results with respect to those obtained 
when a symmetrically orthogonalized basis set was considered. Hence, a very 
simple explanation for the poor  results obtained using PPP-SCF and C N D O / 2  
wave functions [9-11] was proposed [12-14]. Recently, however, a new collection 
of theoretical values for quadrupolar moments and their A and C polarizabilities 
has been published [15], where the proposition of neglecting two center terms 
in the evaluation of these properties has been reactualized and also used to 
predict values for the first excited state. It seems then  convenient to repeat the 
analysis of the ZDO approximation in the terms already mentioned, with both 
the purpose to assess the reliability of numerical results reported when non- 
diagonal elements are neglected and to discuss the foundation of an alternative 
and more satisfactory approach to the problem. 

2. General Aspects of the Theory 

The quadrupolar tensor O ~  is defined [16] as: 

O~t3=�89 ~et(3r~(t)r~(t)-r2(t)6~)*) (2.1) 

where qb denotes the molecular wavefunction, et is the charge of the i-th particle, 
r~(t) one of its cartesian coordinates, r(t) its distance with respect to the origin 
and the sum extends over all charged particles. 

Within the clamped nuclei approximation, single determinantal and restricted 
description of the electronic wave function, for a closed shell situation, qb is 
given by: 

= [~bl(1)4~l(2)~b2(3)~2(4) �9 �9 �9 ~bN(2N- 1)~N(2N) I (2.2) 
I 

where the conventional notation has been adopted for representing one-particle 
spin-orbital wavefunctions and a normalized determinant. Hence, combining the 

1 See for example the presentation by K. Freed in "Modern Theoretical Chemistry" Vol. 7 (Ed. 
by G. A, Segal), Plenum Press, New York (1977). 
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above two equations we can define: 

O ( x , 8  N E = O ~ + O ~t3 

with 

zp (3Rp~Rpt3 - R e&t3) 
P 

(2.3) 

--2-- 1 Z Zp~)aqs (Rp )  
p 

and 
N 

0o,#3 = --  E ( ~-)it3r~rt~ - r2 a~t3 Iqbi) 

(2.4) 

= - Z (r)14, , )  ( 2 . 5 )  
i 

In these equations the set Rp denotes the position vectors for the nuclei _P 
where the sum in p runs over  all the nuclei of the molecular system, and r stands 
for an arbitrary electron position vector. The respective sums consider all the 
occupied orbitals and the results are expressed in atomic units. 

In a semiempirical theory, the first simplification at this point comes in assuming 
that the set of electrons can be divided into the so-called inner-electrons and 
valence electrons [17]. This separation, which strictly speaking ought to be 
understood in terms of some kind of molecular orbitals, allows us to express 
Eq. (2.5) as a sum of two contributions, namely: 

E / ~  I N N  . .-x V A L  
O ~ t 3 = , J ~  + t ~  . (2.6) 

Due  to the localized character and unper turbed properties assumed for the 
function describing inner type electrons, should be expressed by an equation of 
the following type: 

I N N  
o I N N  ~ = - 2  Y. (&Clo~(r ) I& c) (2.7) 

p i~p 

where ~b c denotes a function of atomic character describing the ith electron 
belonging to the atomic center _P, the first sum runs over  all the atomic centers 
in the molecular system and the second one extends over all inner function 
localized at the center P. 

~ V A L  
In turn, "-'-t~ should be given by an expression similar to Eq. (2.5), but just 
considering the sum orbitals describing spatial zones corresponding to the so- 
called valence electrons. These zones are thought to be, in principle, spread out 
along the entire molecular system, therefore one may consider expressing these 
molecular orbitals in a certain atomic orbital type basis set and rewrite Eq. (2.5) 
a s :  

oVAL = 1 (2.8) 
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where A, represents now a member of that atomic orbital type basis set and P,~ 
is one element of the Coulson's bond-order  matrix [18]. 

3. The Core Contribution 

In order  to proceed further we are now going to specialize the discussion to the 
evaluation of the terms in Eq. (2.7). At this point we have to distinguish that 
the quadrupolar moment  operator  is defined with respect to a certain laboratory 
coordinate system, which is not arbitrary when the dipolar moment  is different 
from zero [16, 19], and the wave functions with respect to the various atomic 
centers p. This situation is easily overcome by the use of very simple vector 
transformations connecting both reference systems: 

r~ = R.~ + r~ (Rp) 

r~ro = Rp,~Rpo + �89 (Rp) + r~ (Rp)Rpo ) + r,~ (Rt,)r o (Rp) (3.1) 

where the notation r(Rp) has been used to indicate that these coordinates are 
refered to a system located at point Rp, parallel to the original one. 

If we use this transformation to evaluate the integrals appearing in Eq. (2.7), 
for a single term in which ~b 7 is located at point _p, then we obtain 

(~b c 10~o (r)l~b c) = 0 ~  (Rp) + (~b C[o~ (r - Rp)l& c) 

+ ~[Rp~ (~b c [r~ (Rp)H& c) + Rp~ (& Clr~ (Rp)]4~ c)] 

- R p .  (c~ CIr(Rp)[fb .c,)6,~o. (3.2) 

From this expression two simplifications come out regarding the unperturbed 
atomic character assumed for the ~ c and symmetry considerations. First of all, 
identifying the inner ~b c functions with the atomic type set ls, 2s or 2p orbitals, 
very simple symmetry arguments show that the second and third right-hand side 
terms in Eq. (3.2) always vanish. Secondly, symmetry considerations also lead 
to a zero quadrupolar moment  tensor for spherically symmetric charge distribu- 
tion, which is the case for electrons described by s-type orbitals and by the 
complete set of p-type orbitals. Hence, one may combine Eq. (2.4), (2.7), and 
(3.2) to define, according to the usual nomenclature in semiempirical theories, 
the "core"  contribution to the quadrupolar moment:  

oCORE = �89 CORE . . . .  so zp t~t3 ~ p ) (3.3) 
P 

where Z C O R E  denotes the nuclear charge minus the number of inner electrons 
of the nuclei p. 
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4. The Pi-Electron Contribution 

At this stage of the current development of semiempirical theories two different 
approaches are possible, namely, to treat the complete set of valence electrons 
as a whole or just the so-called pi electrons, considering the remainder as included 
in the atomic cores. We are going to adopt in the first place this last viewpoint 
both as is consistent with the actual historical development of semiempirical 
theories and for simplicity in the presentation of what we would like to emphasize 
in the following discussion. 

Firstly, one should comment about the consequences resulting from using the 
point charge model to estimate the core contribution when the sigma electrons 
are considered part of the core. A very simple argument allows us to realize 
that these consequences are important in understanding the results given by the 
model. 

Quadrupolar moment will be different from zero if the charge distribution 
considered departs from spherical symmetry. If we analyse Eq. (3.2) for a 4~ c 
being actually a sigma bond, the directed character of this type of bond prevents 
use of the kind of arguments employed to obtain Eq. (3.3) and, contrarily, one 
could imagine that a net sigma bond quadrupolar moment should exist. Un- 
doubtedly, the origin of the model discussed has its roots in what has been 
previously done for the dipolar moment operator case. Given that the point 
charge model has proved to be useful in the estimation of that property, the 
obvious question which arises then is what could make the situation different in 
the present case considered. A very crude explanation may be put forward 
regarding the vectorial character of the dipolar moment operator. The almost 
symmetric disposition of the sigma bond, in the molecular plane, around the 
different atomic centers participating in the pi-system, gives reasons for consider- 
ing a sort of vectorial cancellation of the sigma bond dipolar moment. Therefore, 
given the assumption that the net contribution arising from the uncompensated 
sigma bond dipolar moment is small, one can justify the point charge model [20]. 

In the quadrupolar moment case such a type of cancellation is possible considering 
all directions in space, but may never occur just in the molecular plane. Therefore, 
the usefulness of the point charge model in representing the sigma contribution 
to the total quadrupolar moment may be questioned seriously'. As a consequence, 
it turns out very difficult to compare experimental results with those obtained 
in semiempirical theories of pi electron systems. One should expect that errors 
arising from these sigma bond quadrupolar moments will mainly affect the 
components of the quadrupolar moment tensor lying in the molecular plane. 
Actually, a glance at the results reported for those molecular systems where 
experimental results are available [20] clearly shows this trend. 

Anyway, it seems difficult to turn this problem around without using some further 
model to incorporate the sigma bond contribution. In this connection Flygare's 
proposition [21] for calculating quadrupolar moments by summing empirically 
derived atom dipole moments may be very illustrative. 
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Based on the experience obtained in the calculation of static dipole pi polarizabil- 
ity [22-24], where a similar situation occurs, one would be tempted to explore 
the idea of a sigma contribution obtained by adding sigma bond quadrupolar 
moment. For the time being, we would like to just point out these ideas and 
proceed by commenting on other aspects of the semiempirical theories for 
evaluating this tensor. 

Let us then consider Eq. (2.8) which gives the contribution of interest. When 
Pariser-Parr-Pople-like self-consistent treatments are used to obtain the 
wavefunction, it has been proposed [3, 15] that the ZDO approximation is 
extended to this expression dropping out all the non-diagonal terms. Given that 
each center contributes with one orbital to the basis set, Eq. (2.8) can be written: 

oVAL ~0 = �89 E Ppv(Ap [| (r)lAp>. (4.1) 
P 

Referring to the quadrupolar moment operator with respect to the various atomic 
centers p by using the transformation given by Eq. (3.1) and resorting to the 
symmetry characteristic of the basis set (2p type) one finally obtains 

v �89 (4.2) O ~  = 
P 

where Xp has replaced A v to stress that the integrals are evaluated using Slater-type 
orbitals. Nevertheless, it has repeatedly been argued [25-28] that the use of the 
ZDO approximation amounts to a reinterpretation of the basis set used for the 
construction of the molecular orbitals such that this basis set should be a L6wdin 
orthogonalized orbital set [2, 29] rather than a non-orthogonal set of Slater-type 
orbitals. 

Fischer-Hjalmars [28] has derived explicit expressions for such orthogonalized 
orbitals and for the energy matrix elements between them in terms of the original, 
non-orthogonal, set of orbitals. The theoretical reasons to explain the consider- 
able success of the method using this type of approximation has been thus given. 

Later on, Hansen [30] analyzed in considerable detail the implications of the 
ZDO approximation for the evaluation of electric and magnetic dipole transition 
moments, following the same type of analysis proposed by Fischer-Hjalmers. 

From his results it may be shown that, within the same level of approximation 
used for generating the wave function, "to neglect" non-diagonal terms for the 
dipolar moment expression is rigorously exact in most situations. Very detailed 
and successful calculations testing this reinterpretation in relation to the dipolar 
moment operator has been carried out [31-32]. 

It therefore seems relevant to investigate whether or not a similar result can be 
derived in the case of quadrupolar moment. Moreover, such an investigation is 
necessary since calculations using expressions of the type represented by 
Eq. (4.2) have been proposed for use in obtaining information about the reliability 
of the wave function produced by semiempirical methods [8] or for the estimation 
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of quadrupolar moments when reliable data have not been provided by 
experimentalists [15]. 

With this aim we shall briefly recapitulate the pertinent parts of Fischer-Hj almar's 
and Hansen's  derivations. We will consider a non-orthogonal  set of atomic 
orbitals ,gp which are assumed real, each one centered at the different nuclei of 
the molecular system and all nearest-neighbour overlap integrals between them 
having approximately the same magnitude. From this set one can obtain a set 
of orthogonalized orbitals [2, 29] Ap using the equation: 

k = X " S - 1 / 2  (4.3) 

where X and • are row matrices of the respective orbitals and S is the overlap 
matrix between the non-orthogonal  basis set. This overlap can, to first order in 
a nearest overlap integral, be written: 

$ = 1 + a (4.4) 

where 1 is a unit matrix and a is a symmetric matrix with elements2: 

apq = S,p+16p+1q + Spp-16p-1q. (4.5) 

The matrix $-a/a is then readily found to first order as: 

$ - 1 / 2  = 1 -- l a .  (4.6) 

From these equations it follows that the expression for an orbital Ap belonging 
to the orthogonalized set is given to first order in a nearest-neighbour overlap 
integral by: 

1 1S 
I~p = Xp - 2 S p p - l X p - 1  --  2 pp+l,~p+l (4.7) 

These orbitals are essentially as well localized as the orbitals Xp, with the 
additional small terms contributing to assure the required first order  orthogonality 
to the neighbouring orbitals in the set. 

The relation between matrix elements of a one-electron operator  M evaluated 
in, respectively, the A and X bases are then straightforwardly obtained: 

<A.IMtA > = <x lMlxp>- Sp~-I(x.IMIx. 1)S~.+I(x~IMIxo+I) 
(4.8) 

<AplMI.~,,+~> = x~lMIx.+ ~) l S~+ l[ (x~lMIxp> + (x~+ dMlx .+  ~) ] 

where matrix elements connecting two non-nearest-neighbour orbitals have been 
considered to be of second order of magnitude and hence neglected in both the 
X and ,~ bases. 

In order  to apply the foregoing analysis to our case, let us consider first one of 
the diagonal terms in Eq. (2.8). Using Eq. (3.1) to express the quadrupolar 
moment  operator  in terms of the local coordinate system at the nucleus, we will 
recover an expression similar to Eq. (3.2) but where 4~ c has been replaced by 

2 The  extension to the case of considering three nearest-neighbours  is trivial but  makes  the notat ion 
more  cumbersome for the purpose of this discussion. 
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Ap. Analyzing the different integrals appearing in that equation by using 
Eq. (4.8) and starting off with the dipole-moment- l ike  integrals we have: 

(A~ Ira (Rp)lAp) = (Xp [r~ (Rp)lXp) - Spp-l(Xp [r~ (Rp)lXp_l) - Spp.l(Xp [r~ (Ro)[Xp+ 1). 
(4.9) 

By symmetry consideration the first right-hand-side member  of this equation is 
zero. The second and third can be re-expressed making a new translation of the 
coordinate system, this t ime at the midpoint of the line connecting the centers 
p and p - 1 (or p and p + 1, respectively). We have then: 

(xplr,~(Rp)]Xp§ = ( R":~12- Rp~) S..~l+ 

+(xpr~( Rp+Rp+I'' \ ~ }IXp• (4.10) 

Using again symmetry  arguments we may realize that this last integral in Eq. 
(4.10) identically vanishes when Xp and Xp§ are equal. Otherwise it is not 
difficult to see that the departure from zero will be proport ional  to the difference 
between Xp and Xp~l. For pi- type calculation methods,  where the non-orthogonal-  
ized basis set is thought to be 2p-type orbitals, the difference comes f rom the 
"effective charge" defining the Slater orbitals [33]. To the extent that the 
difference does not give integrals greater  than the respective Sp• integrals, we 
can conclude that Eq. (4.10), to first order, is zero. Table 1 illustrates the 
numerical behaviour of the integrals discussed above for some typical situations. 
The results confirm the validity of such a type of conclusion. Therefore,  within 
the first order approximation the d ipole-moment- type  integrals vanish. 

For the other type of integrals, e.g. quadrupolar  moment  type referred to the 
local coordinate system, one can repeat  the same type of reasoning presented 
in the previous analysis and also conclude that, to first order approximation,  to 
evaluate this type of integral in a non-orthogonal  basis set or in an orthogonal 
one produces the same result. Hence,  one can write the following equality for 
the diagonal terms: 

(A,,Io,~,~ (r)lA .) = 0~ (R.)+ (XoIO,~ ( r -  Rp)[Xp). (4.11) 

Table 1. Numerical behaviour of overlap integrals vrs. dipolar-like integrals for 
some typical cases a 

Type C-X Screening constant b Overlap Dipolar-like c 

B 1.3 0.30284 0.11703 
C 1.625 0.24433 0.0 
N 1.95 0.19107 -0.06539 
O 2.275 0.14834 -0.09276 
F 2.6 0.11556 -0.10191 

a Values in a.u., interatomic distance equal to 1.4/~ in all cases. 
b Slater's rules 
c r measured from the midpoint of the line connecting the atomic centers. 
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The above expression coincides with that traditionally used in the literature to 
carry out the evaluation of the diagonal matrix elements. 

Next we have to consider the nearest-neighbour non-diagonal elements in 
Eq. (2.8). Transforming the coordinate system as already studied, we obtain: 

It is easily shown by using Eq. (4.8) and translating appropriately the coordinate 
systems that in first order approximation:  

(ApIr,~(Rp)IAp+I)=(xpIr~( Rp+Rp+'\-~ ) Xp+l/\ 

(Ap [O~ (r - Sp)l,~p+l) = (Xp IO,~[J (r -- ~p)lXp+l)  

- l  &.+ l[ (x~iO~(r - R .  )lxP + (x.+ dO~,,(r - n.<)lXo+ l> ] 

- �89 p+l~ -R.~)(Rp+I~ -Rp~)- IR.+I - n.12a~l. 
(4.13) 

In terms of the non-orthogonal  basis set we thus obtain the following general 
expression for nearest-neighbour non-diagonal matrix elements: 

<a. Io~ (~)la~.> = <x~ Ioo~ (r - np)lXp+ ~> 

-}-3[Rp.(/~prI3(I~P21~p+I)Xp+I)+(~pr.("P ~ ]lXp / pl3j 

-,p.(Xpl~l~P2~l~P+l ) .~p + 1) (~a/3 

i 
- ~Spp• (Rp+,,~ - Rp.)(Rp+le - R p ~ ) -  [Rp+1 - Rp[2S.~ ] 

- ~S,p+,[(Xp 10~ (r - Rp)lxp) + (xp+, Io.,  (r - Rp+,)l)(p+l) ]. (4.14) 

Since we can no longer exploit symmetry  considerations to reduce this expression, 
we must conclude that we have not recovered the Z D O  results this time, as 
occurs in the dipolar moment  case. In Table 2 we have compiled some numerical 
results for benzene and parabenzoquinone,  as two representatives of pi-systems. 

We have endeavoured to point out the different behaviour of the dipolar momen t  
and the quadrupolar  momen t  operators  as regards what is assumed in an 
"o r thodox"  interpretation of Z D O  approximation and what results when the 
calculations are carried out with an orthogonalized basis set. 

Table 3 displays the values of the quadrupolar  momen t  for the above two 
molecular systems when the point charge approximation is used to evaluate 
sigma and core contributions. The results for the cases neglecting all non-diagonal 
terms and in an orthogonalized basis set are presented respectively. It is clear 
f rom these results that the differences s temming from whether  or not the 
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Table 2. Different behaviour of dipolar moment and quadrupolar moment nearest-neighbour 
matrices elements according to different interpretation of the basis functions. The benzene and 
p-benzoquinone cases a 

Quadrupolar moment 
Dipolar moment (component XX) 

Bond b Distance ZDO c d ZDO 

C = C  1.397 0.0 0.0 0.0 0.242779 
(Type I) 
C = O  1.237 0.0 -0.109736 0.0 -1.117330 
(Type II) 
C = C  1.482 0.0 0.0 0.0 0.235926 
(Type III) 
C ~ C  1.348 0.0 0.0 0.0 0.244332 
(Type IV) 

a Values in a.u. except for distance (/~); screening constant obtained using Slater's rules. 
b Nomenclature defined in Fig. 1. 

Non-diagonal contribution assumed equal to zero. 
d Integrals evaluated using symmetrically orthogonalized orbitals. 

0 

113 

0 

Table 3. Quadrupolar moment values (10 -26 c.g.s.) according to different 
approaches for non-diagonal contribution a. 

Benzene p-benzoquinone 
Component b ZDO o d ZDO 

XX -9.18 -11.78 -0,35 2.55 
YY 4.59 5.89 16.89 22.20 
ZZ 4.59 5.89 -16.54 -24.75 

a Values with respect to center of masses. 
b Molecular plane is ZY. 
c Non-diagonal contribution is assumed equal to zero. 
d Nearest non-diagonal integrals are evaluated using symmetrically 
orthogonalized orbitals. 

n o n - d i a g o n a l  m a t r i x  e l e m e n t s  a r e  c o n s i d e r e d  a r e  n u m e r i c a l l y  i m p o r t a n t  a n d ,  o f  

c o u r s e ,  t h e s e  d i f f e r e n c e s  i n c r e a s e  as t h e  c h a r g e  d i s t r i b u t i o n  of  t h e  m o l e c u l a r  

s y s t e m  d e c r e a s e s  in  s y m m e t r y .  T h e r e f o r e ,  if t h e  r e i n t e r p r e t a t i o n  of  t h e  Z D O  

a p p r o x i m a t i o n  is va l id ,  t h e  r e l i a b i l i t y  of  r e s u l t s  b a s e d  o n  n e g l e c t i n g  t h e  n o n -  

d i a g o n a l  c o n t r i b u t i o n  in  E q .  (11 .8 )  m a y  b e  q u e s t i o n e d  s e r i o u s l y .  
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Even though, from the analysis of the theoretical and experimental  results for 
the cases available one may be tempted to justify the apparent  and strong 
discrepancy existing in sign and magnitude in almost all the components ,  no 
definitive conclusion can be drawn at this stage of the comparison because of 
the lack of a reliable model  for the sigma contribution. Actually, looking at 
Table 3 we notice that the benzene results, incorporating non-diagonal terms, 
seem even slightly worse. 

5. The All Valence  Electron Contribution 

In such circumstances, if we desire to have a way to assess the reinterpretat ion 
of the Z D O  approximation in the terms presented here, at least in principle, we 
have to focus our attention on what happens in semiempirical methods treating 
the complete set of valence electrons explicitly. 

Results reported using the C N D O / 2  method [4-8] present  the opportunity to 
carry out such an evaluation. In those calculations the Z D O  approximation has 
been interpreted in the same terms as discussed in pi-semiempirical theories, 
except that the non-diagonal  terms involving functions centered at the same 
a tom are taken into account and evaluated by using Slater-type orbitals. One 
can well imagine that the inclusion of this type of terms stems from what is done 
in the case of the dipolar momen t  operator  [11] since in the calculation model  
no reason has been given for the inclusion of such terms. It  seems then worthwhile 
to extend briefly to this case a study in terms of a symmetric orthogonalized 
basis set to see what happens with the matrix elements. 

It is necessary to comment  at this point that it has been demonstra ted  by Gray  
and Stone [34] that the approach used in the pi-electron case is no longer valid 
for the general case because the expansion of the overlap matrix S used in the 
study can become divergent in the situations analyzed. However ,  it has recently 
been shown that the S matrix can be t ransformed into a matrix which gives a 
convergent series and an analysis, in the same terms that Fischer-Hjalmars  
proposed,  may still be carried out, although with another  meaning for the 
expansion matrix [35]. Because the modifications in the formalism have to do 
more  with the meaning of the parameters  and certain new coefficients than with 
the structure of the various formulas occurring in the study we have preferred 
to keep the form of the origin analysis for the qualitative type of discussion in 
which we are interested and we do not make  the notation more  cumbersome.  

Thus Hansen ' s  derivation will be adopted and for simplicity we will consider 
just two mutually orthogonal  sets of atomic type orbitals 3. Assuming that no 
two orbitals belonging to the same set are centered on the same atom, each of 
the two sets can now be orthogonalized separately by Eq. (4.6) since there are 
no elements in the overlap matrix connecting orbitals of different sets. Hence  

3 2s and 2p Slater-type orbitals are not necessarily orthogonal on different centers, but they can 
be pre-orthogonalized to fit into this discussion. 
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we are lead to: 

1 i S Ap = Xp-~Spp-IXp- t  - ~  p.+lXp+t 
, , 1 S, , 1 ,  (5.1) 

A.  = X . - ~  . . -1X. -1  -2S . .+IX. -1  

where the prime is used to distinguish between members of different sets. 

Matrix elements involving orbitals belonging exclusively to one set are identical 
to those already derived in Eq. (4.8). Other new matrix elements in this case are: 

M ' 1S  ' ' ' <XplMIx.,> = <x.I Ix .>-=E . . - ,<x . - l lMIxp>+ S . . - I <x . IM Ix . - I > ]  
1 t t t - ~ [ s . .  +1 (x.+l  [ m i x . )  + s . .+~  (x .  [MIx .  +~ >] (5.2) 

and 

<A.+xlMIA. >, _- <X.+IIMLx.>_%ES..+~<x.IMIx.>+S..+~<X.+IlM[x.+I>], 1 , , , 

where two center terms other than nearest-neighbour elements are neglected 
for the same reason outlined in the discussion of Eq. (4.8). 

In the case that M is the quadrupolar moment  operator,  we realize straightfor- 
wardly that for matrix elements involving orbitals belonging exclusively to one 
set, the results will be identical to those obtained in the previous section. 
For the new types of integrals the situation is as follows. We firstly consider 
integrals involving two functions centered at the same atom and translating 
coordinate systems, we have to study how one evaluates dipolar-like and local 
quadrupolar moment  integrals in terms of the non-orthogonal basis set. Using 
Eq. (5.2) and following a line of thinking analogous to that presented when 
Eq. (4.11) was obtained one can show that, in first order approximation, to 
evaluate the integral in any of the bases results the same. Contributions coming 
from these types of matrix elements are given then by the equation: 

<A.IO~(r)[A;) = (X.[O~o ( r -  R.) Ix ; )  
3 t ; + + 

- R .  " (xplr(R.)x'p) 6~ .  (5.3) 

For the two-center mixed matrix elements we notice that, contrary to what 
happens for non-mixed matrix elements, the integrals given in the correction 
for non-orthogonality (see Eq. 5.2) are also essentially non-diagonal matrix 
elements. They are identically zero by symmetry or, within the level of approxi- 
mation, they can be neglected. Thus, contributions arising from such types of 
terms are read as: 

<x.+do  (r)lx ;> = -R . ) l x ;>  
3 t ! + (X.+I + <X.+, Ir , (R.)Ix.)] 

- R.. <x.+ILr(R.)Ix'~)6~. ( 5 . 4 )  

Looking at Eqs. (4.14), (5.3), and (5.4) it is clear that nearest-neighbour non- 
diagonal matrix elements cannot be disregarded without a more careful study. 
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Actually, Eq. (5.3) gives the reasons for the consideration of taking these types 
of non-diagonal terms into account, similarly to what is done in the dipolar 
moment  case. Only a numerical study equivalent to that presented in Tables 2 
and 3 may give a definitive answer in this respect 4. 

However,  even without a numerical study it is possible to make some more 
comments reinforcing this view of the ZDO approximation. First of all there is 
no reason at all to think that the non-diagonal elements of the type expressed 
for Eq. (4.14) will have a different numerical behaviour to that shown in 
Table 2. On the contrary, one is tempted to think that for sigma type orbitals 
the importance of these terms are going to increase and therefore the values 
reported for quadrupolar moment  components will be significantly changed. 
Secondly, we can resort to the results reported by Rabinowitz et al. [6]. These 
authors, analyzing results obtained by using an iterative extended Htickel method, 
have pointed out that, numerically, the contribution of the two center parts to 
the quadrupolar moment,  is of the order of magnitude of the moment  itself. 

On account of the drastically better  agreement with experimental results, with 
respect to those evaluated with C N D O / 2  method (which completely fails to 
reproduce them with any consistency) they conclude that it is important to 
include bicentric densities (overlap densities) to describe charge distributions. 
Therefore  even when the iterative extended Htickel method gives rise to a bond 
order matrix different from that of the C N D O / 2  method, one can imagine that 
the two-center contribution, existing when the ZD O  approximation is reinter- 
preted, will play an important role in the determination of the final values for 
the various components of the quadrupolar moment  tensor evaluated within the 
C N D O / 2  scheme. 

6. Conclusions 

The theory of quadrupolar moment  evaluation at semiempirical level has been 
reviewed in detail in order  to underline and discuss the main assumptions usually 
adopted to perform the calculations. 

The first conclusion which can be drawn from this discussion is that, for molecular 
systems with pi-electrons, the treatment of the sigma contribution in the same 
terms as in the inner-electron case, has no theoretical basis, neither exactly nor 
approximately. It therefore turns out that if we want to compare results with 
experimental values, without introducing another empirical parameter  to the 
theory, we have to just focus our attention on the component  out of the molecular 
plane. 

Furthermore,  if the Z D O  approximation is reinterpreted as the result of using 
a symmetrical orthogonalized basis set to evaluate matrix elements instead of a 
non-orthogonal  one, there is no reason at all to neglect non-diagonal elements 

4 Works in this connection are in progress. 
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in the evaluation of the quadrupolar moment  operator, and the results drastically 
change when they are considered. 

On the grounds of these facts, it is claimed that results obtained using the 
"or thodox" interpretation of the Z D O  approximation have to be handled with 
very much care. Moreover, the theory has been extended to treat first excited 
state situations, where in most cases quite important changes occur in the overlap 
densities. In these circumstances it even turns out almost impossible to assign 
any reliable meaning to the difference in value between the electronic states - a 
technique that in principle would allow one to overcome the problems of the 
sigma contribution. The same conclusions are valid in the case of quadrupolar 
polarizabilities. 

In the all-valence electron case, at least from a theoretical viewpoint, the same 
conclusion as for pi-electron systems holds in connection with dropping out 
non-diagonal matrix elements. Based on this fact, it is proposed that the erratic 
behaviour of C N D O / 2  results compared with calculation methods in which 
overlap densities are taken into account, may be perfectly due to a wrong 
interpretation of the Z D O  approximation rather than problems with the quality 
of the wave function obtained through the method. 

To clarify this proposition a detailed numerical study is worthwhile since con- 
clusions have been drawn questioning the ability of the C N D O / 2  method to 
account for any higher molecular moment than the dipolar one. 

Addendum 

Since completion of this manuscript, the author has become aware that P. O. 
L6wdin in the Proceeding of the International Conference of Theoretical Physics, 
Kyoto and Tokyo, Septemper 19 5 3, discussed the series expansion of the overlap 
matrix S, showed that it is not always convergent in actual molecular and 
solid-state problems and gave sufficient criteria for convergence. 
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